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The two-dimensional model of itinerant electrons coupled to an antiferromagnetic order parameter is con-
sidered. In the mean-field solution the Fermi surface undergoes reconstruction and breaks into disconnected
“pockets”. We have studied the effect of the thermal fluctuations of the order parameter on the spectral density
in such system. These fluctuations lead to a finite width of the spectral line scaling linearly with temperature.
Due to the thermal fluctuations the quasiparticle spectral weight is transferred into a magnetic Brillouin zone.
This can be interpreted as restoration of “arcs” of the noninteracting Fermi surface.
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I. INTRODUCTION

Fluctuations play a prominent role in systems of reduced
dimensionalities leading to a complete or partial suppression
of long-range order and rendering mean-field approximation
inapplicable. Calculation of correlation functions then be-
comes an arduous task. The question is whether in the ab-
sence of true long-range order these functions display fea-
tures of the ordered state and if yes, to what extent. The
correlation function we are concerned with in this paper is
the single-electron spectral function. Measurements of this
function constitute the most powerful experimental probes in
the physics of strongly correlated systems. We discuss the
situation when the system is close to being antiferromagneti-
cally ordered and study the effect of thermal order-parameter
fluctuations.

There is a considerable literature addressing the influence
of quantum fluctuations �we refer the reader to Refs. 1 and 2
which also provide references to the related papers�. How-
ever, at finite temperatures one has to take into account ther-
mal fluctuations which bring specific problems. In our previ-
ous publication3 we considered the influence of thermal
fluctuations on the spectral function of a two-dimensional
�2D� superconductor. 2D superconductors have quasilong-
range order such that phase fluctuations are critical in the
entire temperature region below Tc. We have found that at
least as far as the thermal fluctuations were concerned, the
frequently used approach based on the conversion of this
problem into a gauge theory turned out to be inadequate.
Indeed, the power of the approach rests on the fact that to
estimate the effect of fluctuations one needs to know only
their Ginzburg-Landau free energy which is universal and is
constrained only by the symmetry of the order parameter.
However, this advantage is lost if one uses the procedures
employed in the gauge theory approach. The latter approach
uses a gauge transformation of the fermion fields with a sub-
sequent attempts to treat the problem as a gauge field theory
one �as, for instance, in Ref. 2�. Such transformation, how-
ever, results in the diagram series where individual diagrams
contain severe ultraviolet divergencies. Hence the universal-
ity is lost. As an alternative we have suggested the direct
perturbation expansion in the order parameter. This proce-
dure preserves universality since the dominant contribution
to all diagrams comes from large distances.

In the present paper we apply the approach of Ref. 3 to
calculate the spectral function in the presence of a fluctuating
commensurate spin density wave �SDW�. This problem has a
potential relevance to the problem of cuprates. There is a
significant experimental evidence suggesting that the Fermi
surface of the cuprates in the underdoped regime undergoes
reconstruction �see, for example, Refs. 4 and 5�. It is fre-
quently suggested that this reconstruction has a magnetic
origin.6,7 On the other hand, it is still unclear whether one
needs a real long-range order to observe such reconstruction
or a short range one will suffice. In the present paper we will
address this question in the context of the spectral function.
We consider only classical �thermal� fluctuations of the order
parameter. This places us in what is called renormalized clas-
sical regime.

II. DESCRIPTION OF THE MODEL AND THE RESULTS

We consider a popular spin-fermion model in two dimen-
sions where electrons interact with a commensurate SDW.1

The antiferromagnetic ordering open gaps at the points of the
Fermi surface �FS� connected by the vector of antiferromag-
netic fluctuation Q= �� ,��, see Fig. 1. As a result the FS
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FIG. 1. �Color online� Formation of a Fermi pockets �thick solid
line� in the mean-field Fermi surface reconstruction caused by the
SDW ordering. The bare Fermi surface �thin solid line� is not
nested. The dashed line is the magnetic Brillouin-zone boundary.
Two subbands with i=1,2 are connected by the antiferromagnetic
wave vector Q= �� ,��. Fermi velocities v1 and v2 are assumed to
be perpendicular. Inset shows two subbands brought together.
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undergoes reconstruction into disconnected pockets. The
Hamiltonian for quasiparticles located near two FS points
connected by Q is

H = �
k�

��k��k�
† �k� + J�

k
S�k+Q�

† ����k�, �1�

where k is a momentum vector in the Brillouin zone and � is
the spin index. The kinetic energy close to the “hot spots”
can be approximated as

�
k�

��k��k�
† �k� � �

i=1,2
�
k�

vik�ik�
† �ik� �2�

with the index i enumerating two subbands related by the
vector Q. The sum in Eq. �2� is over small momenta and two
subbands can be combined together �see inset in Fig. 1�. We
assume that there is no nesting; to simplify the calculations
we consider the case when the corresponding Fermi veloci-
ties are perpendicular to each other: v1=vx̂ and v2=vŷ. At
the mean-field level the spectrum is determined by the equa-
tion

�2 − v�kx + ky�� + v2kxky − J2 = 0 �3�

with the solutions

�1,2 = v�kx + ky�/2 	 ��v�kx − ky�/2�2 + J2 �4�

signifying tips of electronlike and holelike Fermi pockets.
Fluctuations of the SDW order parameter transform rigid

energy gaps into pseudogaps and smear the sharp peaks in
the spectral function. Below we will study this process in
detail.

It has been demonstrated in Ref. 1 that the feedback from
the quasiparticles onto the spin Hamiltonian makes signifi-
cant changes in the spin dynamics but does not affect zero-
frequency modes. Since we consider only classical �thermal�
fluctuations, such feedback will be neglected.

For the sake of simplicity we also assume that the vector
of spin polarization lies either �i� in the XY plane or �ii�
directed along the z axis. In both cases the transition occurs
at finite temperature. In the first case the order parameter has
U�1� symmetry and the transition is of the Kosterlitz-
Thouless type. The spin fluctuations below Tc are critical.
This power-law behavior will also hold above Tc, though
only at distances smaller than the correlation length �. How-
ever, since the latter length is exponentially large in �T−Tc�,
there is a range of temperatures T
Tc and energies where
the obtained expressions for the spectral function remain
valid. In all this region where the magnetic correlation length
is either infinite �T�Tc� or exponentially large, the order
parameter fluctuations can be considered as classical. This is
essential for our approach. In the second case the order pa-
rameter has Z2 symmetry and below Tc it acquires finite ex-
pectation value. Hence T�Tc region is trivial and we will be
concerned only with T�Tc region. The correlation length in
this region is ���T−Tc�−1; to neglect quantum fluctuations
we need it to be much larger than T−1 meaning that we need
to stay close to Tc.

We start with the easy-plane anisotropy case; the easy axis
case can be obtained as a simple generalization. The fluctu-
ating order parameter is staggered magnetization S, it lies in

a plane and forms an angle 
 with the fixed direction in the
plane. Under the assumptions described above the quasipar-
ticle Lagrangian is simplified

L = �
i,�

�̄i,���� + �i�− i����i,� + J�
��

ei
�̄1,����
− �2,� + c.c.,

�5�

where �i�k�=vik. We assume that the free energy for the
classical phase field 
 is Gaussian

F

T
=

�s

2T
	 dxdy���x
�2 + ��y
�2� . �6�

Now the problem looks similar to the one of the thermal
fluctuations in superconductors considered in our previous
paper.3 We stress that Eq. �6� is an effective free energy,
where the stiffness �s is renormalized by the processes in-
volving, e.g., particle-hole excitations. In addition, the unhar-
monic terms in the free energy, Eq. �6�, involve higher gra-
dients rendering them irrelevant for the present calculation.

The previous attempts to describe the fluctuation effects
in renormalized classical regime dealt with the isotropic
case.8,9 Instead of summing the diagram series these papers
used semiqualitative approach. The electron self-energy was
represented by the first-skeleton diagram with the Ornstein-
Zernike propagator for the spin field and with the vertex
replaced by a phenomenological constant. Another approach
based on D-2 expansion has been recently employed in Ref.
10.

To be definite we consider the propagator of the spin-up
particles and sum up leading contributions from all diagrams.
Here we advantage of the fact that multipoint correlation
functions of bosonic exponents in the Gaussian model in Eq.
�6� are known explicitly. The spectral weight reaches its
maximal value in the vicinity of the bare mass shell, �
�vkx and also close to the mass shell of the spin-down par-
ticle ��vky �the shadow mass shell�. These two regions
form two complementary parts of the Fermi pocket. As the
spectral weight is small at the magnetic Brillouin-zone
boundary, kx�ky we have studied the Green’s function sepa-
rately at ��vkx and ��vky. In what follows we set the
Fermi velocity to one, v=1.

The summary of our results is as follows. At the mass
shell we got the following expression for the Green’s func-
tion:

G−1 = Gmf
−1 +

2da4d�2�2 − 2d�J4

�− i�� − ky��4−4d Gmf
−1 ln
 Gmf

−1

� − ky
�

+
2dia6d�2�2 − 2d���1 − 2d�J6

�− i�� − ky��5−6d , �7�

where d=T /4��s is the scaling dimension of the order pa-
rameter, a is the lattice constant, and the mean-field Green’s
function is

Gmf
−1 = � − kx +

iJ2a2d��1 − 2d�
�− i�� − ky��1−2d . �8�

We would like to emphasize that the expression �7� does not
rely on the smallness of the parameter d�1 /2.
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At the shadow mass shell, ��ky we get

G =
J2ei�d��1 − 2d�

�� − kx�2 �� − ky +
iJ2a2d��1 − 2d�
�− i�� − kx��1−2d
−1+2d

.

�9�

Our analytical results, are presented graphically in Fig. 2.
The area of validity of these expressions is controlled by the
energy scale

TK = J�Ja�d/�1−d�. �10�

Equation �7� is valid for �ky�
TK. Equation �9� is valid for
�kx�
TK.

The remaining part of the paper contains a derivation of
the results, Eqs. �7� and �9�. Following the approach of Ref.
3 we develop a perturbation theory in the coupling constant
J. Though this perturbation theory is free of ultraviolet sin-
gularities it contains infrared singularities at ��kx�y� which
we sum up.

III. BEHAVIOR AT THE MASS SHELL: �Èkx

In this section we derive the result in Eq. �7�. It is useful
to consider the self-energy ���k� defined in the standard way
by the Dyson equation

G��k� = �� − kx − ���k��−1. �11�

As is shown below, the self-energy is a regular function of
frequency at the mass shell and only weakly logarithmically
nonanalytic in the coupling constant.

The J2 contribution to the self-energy is

��
�2��k� =

− i�Jad�2��1 − 2d�
�− i�� − ky��1−2d . �12�

We notice that in the limit of infinite phase stiffness, d=0,
Eq. �12� reproduces the mean field spectrum, Eq. �4�, as ex-
pected. Note that the self-energy Eq. �12� is regular at the
mass shell. This, however, is not the case for higher-order
contribution. In fact, the fourth-order contribution has a
weak logarithmic singularity �see Appendix A 1�

��4� = 2d
− i�Jad�4�2�2 − 2d�

�− i�� − ky��3−4d � log � , �13�

where

� =
� + i0 − kx

� + i0 − ky
. �14�

The aforementioned analyticity of the self-energy at the mass
shell is restored once the leading on-shell singularities in all
orders in J2 are summed up. The reminder of the present
section is devoted to this task.

Using the expressions for the bare �retarded� Green’s
functions

iG1�2�
�0� ��,r� = ��rx�y����ry�x��ei�rx�y�. �15�

we write the self-energy at the order J2n with n�3 in the
form �see Fig. 3�
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FIG. 2. �Color online� The spectral density at the Fermi surface,
A�=0�k�, as given by Eqs. �7� and �9� at ky 
kx and kx
ky, respec-
tively. These two graphs are separated by the area where the pre-
sented derivation ceases to be valid. The parameter d is �a� d
=0.08 and �b� d=0.2.
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FIG. 3. �Color online� Graphical representation of the self-
energy correction of the order 2n in coupling constant, Eq. �16�.
Solid vertical and horizontal lines represent segments of a real-
space electron trajectory for �a� particle close to the mass shell, �
�kx and �b� particle close to the shadow mass shell, ��ky. Incom-
ing �blue� and outgoing �red� arrowed skew dashed lines represent
exponential factors ei
�ri� and e−i
�p j�, respectively.
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��
�2n��k� = i�− iJ�2n	

0

�

dxnei��−kx�xn	
0

�

dynei��−ky�yn

� �
i=2

n−1 	
0

xi+1

dxi�
i=1

n−1 	
0

yi+1

dyi

�C�2n��r1, . . . ,rn;p1, . . . ,pn� , �16�

where ri= �xi ,yi−1�, pi= �xi ,yi�, and x1=y0=0, �see Fig. 3� and
the cumulant in the last line

C�2n��r1, . . . ,rn;p1, . . . ,pn� = �1,n − �
i=1

n−1

�1,i�i+1,n + ¯

+ �− 1�n�1,1 ¯ �n,n �17�

is expressed in terms of averages of the exponents of the
phase fields

�i,i+l = �ei
�ri�+¯+i
�ri+l�e−i
�pi�−¯−i
�pi+l�� . �18�

The latter average with free energy, Eq. �6� is well known

�1,n = a2dn�n−2�� �̃i,j=1
n �ri − r j��̃i,j=1

n �pi − p j�

�
i,j=1

n

�ri − p j� �
2d

, �19�

where tilde over the product sign excludes i= j.
In what follows we sum up the most singular terms in

expansion in Eq. �16�. Our solution is based on the physical
idea that at the mass shell particle propagates over long dis-
tances before it gets scattered by a thermal fluctuation. As in
our case the on mass shell particle’s direction of motion is
along X axis, see Fig. 3�a�, the horizontal segments in the
staircase shaped real-space trajectory in Fig. 3�a� are longer
than the vertical ones by a factor of ��−ky� / ��−kx��1. In
other words, the mass shell singularity comes from the inte-
gration region yi�xj. Accordingly, we introduce new vari-
ables �i

yn − yn−1 = �nxn, . . . ,y1 − y0 = �1xn �20�

and argue that the important domain of integration is �i�1.
We expand the cumulant in Eq. �17� in powers of �is and
retain the lowest power term to get the most singular contri-
bution. It can be shown by inspection that this expansion
gives

C�2n� � a2dn�
i=1

n

�yi − yi−1�−2d

� � �xn
2 + �yn−1 − y0�2�d�xn

2 + �yn − y1�2�d

�xn
2 + �yn − y0�2�d�xn

2 + �yn−1 − y1�2�d − 1

� − 2da2dn�xn�n�1�n�

i=1

n

�i
−2d. �21�

We substitute Eqs. �20� and �21� in Eq. �16�, and perform
integrations over xn. We now analyze the remaining integra-
tions over �is

��2n� = 2d
�− i�2n+1�Jad�2n��n�2 − 2d� − 1�

�n − 2�!�− i�� − ky��n�2−2d�−1 In��� , �22�

where

In��� = 	
0

�

�
i=1

n

d�i

�1
1−2d�2

−2d
¯ �n−1

−2d�n
1−2d

�� + �1 + �2 + ¯ + �n�n�2−2d�−1 . �23�

We notice that for n=2,3 the integral in Eq. �23� diverges at
the upper limit. In this case the expansion in Eq. �21� is not
justified. These values of n have to be treated separately, �see
Appendix A for details�. For n=2 the most singular part is
given in Eq. �13� and for n=3 we obtain, �see Appendix A
2�.

��6� = 2d
− i�Jad�6��1 − 2d��2�2 − 2d�

�− i�� − ky��5−6d log � . �24�

For n�3 the integral in Eq. �23� is

In��� = �1 − 2d�2�3−n�n�1 − 2d���n − 3�
��n�2 − 2d� − 1�

. �25�

The contributions of the orders n�3 give

�
n�3

��2n� = 2d�
− i�Jad�4�2�2 − 2d�

�− i�� − ky��3−4d

�log�1 + x�2d
− i�Jad�6��1 − 2d��2�2 − 2d�

�− i�� − ky��5−6d

��1 − log�1 + x�� , �26�

where

x =
�−1�Jad�2��1 − 2d�
�− i�� − ky���2−2d� . �27�

The sum of contributions in Eqs. �12�, �13�, �24�, and �26�
yields the final result Eq. �7�.

IV. GREEN’S FUNCTION AT THE SHADOW MASS
SHELL, �Èky

In this section we turn to the analysis of the behavior of
the Green’s function at the “shadow side” of the pocket,
��ky. As this region is separated from the mass shell, in-
stead of the self-energy it is more convenient to study the
Green’s function itself. It is also convenient to discuss the

amputated propagator, �̄��k�=G��k��G�
�0��k��−2. To the sec-

ond order in J, �̄��k� is given by Eq. �12�, and is singular at
�=ky. At the next, fourth order, the correction �see Appendix
B� has stronger singularity

�̄�4� �
i�Jad�4��1 − 2d���2 − 2d�

�− i�� − kx��3−4d �2−2d. �28�

In what follows we perform a resumation the most singular

terms in the expansion of �̄ to all orders in J. Here, similarly
to the analysis in Sec. III the solution is based on the obser-
vation that the off-mass shell particle is almost immediately
scattered by a fluctuation and propagates large distance in Y
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direction afterward. In other words, due to the condition �
�ky, the vertical segments of the real-space trajectory, see
Fig. 3�b� are longer than the horizontal segments by a factor
of ��−kx� / ��−ky�.

Keeping the above considerations in mind, for n�2 we
introduce new variables

Y�1 = x1 − 0, Y�2 = x2 − x1, . . . ,Y�n−1 = X − xn−2. �29�

Integrating over yis variables we write the correction of order
�2n� to the amputated Green’s function as

�̄�2n� =
�− i�2n−1�Jad�2n

�− i�� − kx��2n�1−d�−1

��2n�1 − d� − 1�
�n − 1�!

Īn��� ,

�30�

where the remaining integrals

Īn��� = �
i=1

n−1 	
0

�

d�i

�1
−2d

¯ �n−1
−2d

��−1 + �1 + ¯ + �n−1�2n�1−d�−1 �31�

are convergent at the upper limit and can be evaluated as

Īn��� = �n−2d�n−1�1 − 2d���n − 2d�
��2n�1 − d� − 1�

. �32�

As a result we obtain for the singular part

�̄�2n� =
i�− iJad�2n�n−2d�n−1�1 − 2d���n − 2d�

�n − 1�!�− i�� − kx��2n�1−d�−1 . �33�

For n=1 the last expression reduces to the second-order cor-
rections, Eq. �12�. The sum of singular contributions Eq. �33�
yields the result of Eq. �9�.

V. CONCLUSIONS

First we would like to make a remark about the easy-axis
anisotropy regime where the phase transition is in the Ising-
model universality class. From our calculations it is easy to
see that as far as the singular terms are concerned, the results
remain unchanged provided one considers only one particu-
lar value for the scaling dimension: d=1 /8. This is despite
the fact that multipoint correlation functions of the Ising-
model order parameter fields are more complicated than Eq.
�19�. However, the singularities are determined by more
simple correlators, namely, by the diagrams where pairs of
the operators are very close to each other �see Fig. 3� result-
ing in a fusion of two order parameter fields. In the Ising
model such fusion generates the energy-density operator and
in the XY model it generates the gradient of 
 field. Both
operators have the same multipoint correlation functions.

Now we can discuss the results. They are well illustrated
by Figs. 1, 2, and 4. The region of applicability of our cal-
culations involves the energy scale TK=J�Ja�d/�d−1�. The re-
sult at the mass shell is valid for �ky�
TK and the result at the
shadow mass shell holds at �kx�
TK. With increasing tem-
perature the spectral weight is transferred toward the bare
Fermi surface and the shadow band feature quickly fades
away as is clearly seen on Fig. 4 where the darker areas
correspond to large values of the spectral density.

Although our model does not include all the features as-
cribed to the cuprates, the results obtained may serve as a
good qualitative guide to the problem. For instance, we see
that critical thermal fluctuations give rise to the characteristic
linear temperature dependence �T of the spectral peak
width, see Ref. 7 for alternative approach. This is an indica-
tion that such fluctuations are responsible of this feature in
the cuprates. Our results demonstrate that with the rise of
temperature the renormalized mass shell identified as the
maximum intensity line in Fig. 4 approaches the bare Fermi
surface while the peak becomes rather incoherent. The back-
side of the Fermi pockets fades away so that the pockets now
look like arcs. These effects are qualitatively similar to that
of the quantum fluctuations studied in Ref. 6 though the in-
tensity of quantum fluctuations is regulated not by tempera-
ture but by the interactions.

In summary, we have presented systematic study of the
thermal-fluctuations effects in two-dimensional system of
electrons in interaction with SDW order parameter. In par-
ticular, the spectral density has been found to be strongly
sensitive to these fluctuations. Fluctuations tend to restore
the noninteracting Fermi-surface topology thus overriding
the effects of the SDW order.
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FIG. 4. False color plot representing the spectral density at the
Fermi surface, A�=0�k�, as given by Eqs. �7� and �9� at ky 
kx and
kx
ky, respectively. The region kx ,ky �TK where the results are
inapplicable is not shown. The parameter d is �a� d=0.04 and �b�
d=0.13. Dashed line shows the mean-field Fermi surface as given
by Eq. �4�.
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APPENDIX A: PERTURBATION THEORY AT THE MASS
SHELL

In the present appendix we evaluate the most singular
corrections to the self-energy at the mass shell, ��kx.

1. Fourth-order contributions

In the fourth order the general expression in Eq. �16�
takes the form

��
�4��k� = iJ4	

0

�

dx2ei��−kx�x2	
0

�

dy2ei��−ky�y2	
0

y2

dy1

�C�4��r1,r2;p1,p2� , �A1�

where r1= �0,0�, r2= �x2 ,y1�, p1= �0,y1�, and p2= �x2 ,y2� �see
Fig. 3�. Equation �21� gives

C�4� =
a4d

y1
2d�y2 − y1�2d� ��y2 − y1�2 + x2

2�d�y1
2 + x2

2�d

�x2
2 + y2

2�dx2
2d − 1
 .

�A2�

We expect the main contribution to come from the region
y1 ,y2−y1�x2 it is convenient to introduce new variables,
y2=�x2 and y1=��x2. To isolate the leading singularity in
Eq. �A1� we expand the cumulant in Eq. �A2� for ��1

C�4� � − 2da4d�2−4d�1−2d�1 − ��1−2d. �A3�

This expansion holds for any d�1 /2.

��4� = − 2di�Jad�4��3 − 4d�

� 	
0

�

d�	
0

1

d�
�3−4d�1−2d�1 − ��1−2d

�− i��� − ky�� + �� − kx���3−4d .

�A4�

The integral in Eq. �A4� is not convergent at the upper limit.
This is an artifact of the approximation in Eq. �A3� which is
not justified for ��1. To overcome this we differentiate Eq.
�A1� twice with respect to the parameter � defined by Eq.
�14�

�2��4�

��2 = − 2di��5 − 4d��Jad�4�− i�� − ky��4d−3

� 	
0

�

d�	
0

1

d�
�3−4d�1−2d�1 − ��1−2d

�� + ��5−4d . �A5�

The integrations in Eq. �A5� are easily done with the result

�2��4�

��2 = − 2di�−1�2�2 − 2d�
�Jad�4

�− i�� − ky��3−4d . �A6�

Integrating Eq. �A6� back we finally get

��4� = − 2di�2�2 − 2d��Jad�4�− i�� − ky��4d−3

��� log � + A� + B� �A7�

with A and B constants. In the last equation the most singular
term is presented in Eq. �13�.

2. Order J6

In this case the general expression �16� with n=3 reduces
to

��
�6��k� = i�− iJad�6	

0

�

dx3ei��−kx�x3	
0

�

dy3ei��−ky�y3

� 	
0

x3

dx2	
0

y3

dy2	
0

y2

dy1

�
ABC − B − C + 1

y1
2d�y2 − y1�2d�y3 − y2�2d , �A8�

where

A =
�x3

2 + y2
2�d�x3

2 + �y3 − y1�2�d

�x3
2 + �y2 − y1�2�d�x3

2 + y3
2�d , �A9�

B =
��x3 − x1�2 + �y2 − y1�2�d

�x3 − x1�2d �
��x3 − x1�2 + �y3 − y2�2�d

��y3 − y1�2 + �x3 − x1�2�d

�A10�

and

C =
�x1

2 + y1
2�d�x1

2 + �y2 − y1�2�d

�x1�2d�y2
2 + x1

2�d
. �A11�

We write

ABC − B − C + 1 = �A − 1�BC + �B − 1��C − 1� .

�A12�

It is apparent form Eq. �A12� that the leading singularity
originates from the first term, �A−1�BC�A−1�−2d�y1
−0��y3−y2�. Introducing new variables as in the Sec. III and
integrating over xis we obtain

��6� = 2di
�Jad�6��5 − 6d�
�− i�� − ky��5−6d

� 	
0

�

�
i=1

3

d�i

�1
1−2d�2

−2d�3
1−2d

�� + �1 + �2 + �3�5−6d . �A13�

Here again, the integrals are divergent on the upper limit.
Similarly to the previous section we differentiate it once with
respect to the variable � introduced in Eq. �14� in order to
isolate the leading logarithmic singularity
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���6�

��
= − 2di�−1 �Jad�6��6 − 6d�

�− i�� − ky��5−6d

� 	
0

�

�
i=1

3

d�i

�1
1−2d�2

−2d�3
1−2d

�1 + �1 + �2 + �3�6−6d . �A14�

The remaining integrals are easily evaluated. The subsequent
integration over � restores the singularity in the self-energy
correction

��6� = 2d
− i�Jad�6��1 − 2d��2�2 − 2d�

�− i�� − ky��5−6d �log � + C� ,

�A15�

where C is an integration constant. The singular part of Eq.
�A15� is given by Eq. �24�.

APPENDIX B: LEADING SINGULARITIES AT THE
SHADOW MASS SHELL, �Èky TO THE FOURTH ORDER

In this appendix we evaluate the singular contributions to
the Green’s function at the shadow mass shell, ��ky to
fourth order in the coupling constant. We start with the ex-

pression �A1� introduced in Appendix A 1. In contrast to the
discussion in Appendix A 1 we anticipate the singularity at
�=ky to come from the region y2�x2 and introduce new
variables accordingly, x2=�y2 and y1=�y2. Performing inte-
gration over y2 we obtain

��4� = i�Jad�4	
0

�

d�	
0

1

d�
��3 − 4d��−2d�1 − ��−2d

�− i��� − ky� + �� − kx����3−4d

� � ��1 − ��2 + �2�d��2 + �2�d

�1 + �2�d���2d − 1� . �B1�

We notice that the singularity at ��ky comes from the re-
gion of small �. Therefore we keep only the first term in the
square brackets in Eq. �B1�. After performing remaining in-
tegrations over �is we obtain

��4� =
i�Jad�4��1 − 2d���2 − 2d��2−2d

�− i�� − kx��3−4d . �B2�

We stress that contrary to the mass shell singularities dis-
cussed in Appendix A, where it was important to compute
the self-energy, at the shadow mass shell it is enough to
consider the Green’s function itself.
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